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Abstract: Although the sizes of business firms have been a subject of intensive research, the definition
of a “size” of a firm remains unclear. In this study, we empirically characterize in detail the scaling
relations between size measures of business firms, analyzing them based on allometric scaling. Using
a large dataset of Japanese firms that tracked approximately one million firms annually for two
decades (1994–2015), we examined up to the trivariate relations between corporate size measures:
annual sales, capital stock, total assets, and numbers of employees and trading partners. The data
were examined using a multivariate generalization of a previously proposed method for analyzing
bivariate scalings. We found that relations between measures other than the capital stock are marked
by allometric scaling relations. Power–law exponents for scalings and distributions of multiple
firm size measures were mostly robust throughout the years but had fluctuations that appeared
to correlate with national economic conditions. We established theoretical relations between the
exponents. We expect these results to allow direct estimation of the effects of using alternative size
measures of business firms in regression analyses, to facilitate the modeling of firms, and to enhance
the current theoretical understanding of complex systems.

Keywords: business firms; companies; econophysics; multivariate scaling; nontrivial power–law
exponents; size measures

1. Introduction

An index of the size of a business firm has numerous implications, ranging from its
method of corporate finance [1,2] and the quality of its CEO [3] to employee job satisfac-
tion [4] and gender gaps in wages among employees [5]. The exact determinants of the size
of a specific firm or a group of firms in an industry have been sought both empirically [6,7]
and theoretically [8,9]. Researchers have also studied regularities in the distribution of firm
size empirically [10–15], mainly motivated by the theory that the evolution of firm size can
be modelled as a stochastic process [10,16–18].

However, the question of what constitutes the “size” of a firm has rarely been ad-
dressed, and it is possible that statistical results regarding firm size depend on the measures
used. Indeed, many of the effects previously found in empirical studies of corporate fi-
nance were not robust when different size measures were used as a control variable [19].
Researchers, who questioned the often implicit assumption that size measurements of
firms are adequate indicators of their actual size [19–21], evidently agree that the relations
of various size measures commonly used have not been well-explored in the literature.
Moreover, some [20,21] propose the notion of multidimensional size for business firms,
using various size measures to indicate manifold aspects. Although it might clarify the
conceptual status of firm size, differences and relations between firm size measures should
be explored empirically for the notion of multidimensional size to be fruitful.
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Regarding the relations between corporate size measures, power-law scaling relations
have been reported empirically [12,19,22–24]. More interestingly, some size measures have
been reported to demonstrate allometric scaling [23], which means that the distribution
of relative deviations from the average relation between two size measures was invariant
regardless of firm size. In other words, when the logarithms of a size measure were
regressed against the logarithms of another measure, the residuals were found to be
surprisingly homoscedastic and independent of the “explanatory” variable; note that
the use of formulae for regression analysis is solely intended for the characterization
of multivariate joint distributions and does not imply causal relations between the size
measures. This suggests that we may be able to employ the residual as a variable indicating
the adjusted “proportion” between size measures of a firm, allowing us to isolate the effects
of using alternative size measures. Nevertheless, the size measures considered in previous
studies are not intended to represent all possibilities. It is unknown as to what extent
allometric scaling accurately describes empirical relations regarding other size measures.
Theories regarding relations between multiple allometric scalings have been lacking as
well. Therefore, empirical characterization and theoretical understanding of various size
measures are still far from complete.

Analysis of the empirical relations between size measures of firms also has merit for
advancing complex systems science, and a few studies [23,24] have indeed been pursued
from such a perspective. Power laws of the form x ∝ yγ are a typical functional form
of scaling found in general complex systems, such as animal bodies [25–28], ecological
communities [29,30], and cities [31,32]. For instance, the value of exponent γ in the scaling
of the metabolic rate (x) on the body mass (y) is close to 3/4 in mammals [25,27,28] and is
theoretically related to the minimization of the energy consumption in blood pumping [33].
Theoretical considerations have successfully been used to predict numerous other scaling
exponents in the natural systems of animal bodies. Similarly, the unique value of γ = 2
for humans (compared with γ = 3 for other animals) in the scaling of the body mass (x)
against the body length (y) was theoretically accounted for by human bipedalism [34]. In
this manner, studies on scaling relations provide a basis for a deeper understanding of a
system’s governing principles.

The present study is focused on multivariate relations among five quantities of firms
that have often been used as size measures in research and practice to characterize scaling
relations exhibited by firms across scales. We based our study on exhaustive annual data
for more than 2 million unique Japanese firms over a 22-year period. After examining the
properties of individual size measures, we empirically verified statistical models of up to
three-dimensional allometric scaling for four of the five size measures, while establishing
theoretical relations between multiple scalings. Building upon these results, we further
developed a method for estimating scaling exponent γ as well as the range where the data
fit well to the scaling relations, thereby obtaining insights into the temporal robustness of
our results.

The remainder of this paper is organized as follows. First, we describe our selection of
firm size measures and the employed data in Section 2. After the dataset and statistical
properties of each size measure are characterized in Section 3.1, we inspect the bivariate
scalings between the size measures and specify the pairs of variables that are in an allomet-
ric scaling in Section 3.2. We then address the problems of seeming inconsistency between
the power–law exponents for the tails of marginal and conditional distributions of size
measures with regard to bivariate scalings (Section 3.3). Next, we examine a trivariate
scaling relation in Section 3.4. Trivariate allometric scalings were found for some combi-
nations of size measures and shown to be related to the transitivity of allometric scalings
both theoretically and empirically. This theoretical development allows robust estimation
of bivariate and trivariate scaling exponents (Section 3.5). We found that the number
of employees has a higher relevance to sales than does the number of trading partners,
and there was a mild variation in the trivariate scaling exponents in the period 1994–2015,
which appeared to be correlated to the gross domestic product (GDP) variation (Section 3.6).
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Finally, we discuss our results and conclude the paper in Section 4. Our rationales for
using the standard regression analysis are given in Appendix A, and problems related
to the theoretical relations between several power–law exponents that appear in scalings,
conditional distributions, and marginal distributions are discussed in detail in Appendix B.

2. Materials and Methods
2.1. Selection of Firm Size Measures

Despite the recurrent claim that the concept of firm size has not been sufficiently
clarified [19–21], the variety of size measures employed in studies has remained mostly
unchanged during the past half century. For example, in an economic study in 1975, the
authors compared different firm size measures using the data of sales, total or net assets,
employment, invested capital, and market value [22]. Almost contemporarily, a review
of organizational studies in 1976 listed the number of employees as well as the number
of clients, sales, and net assets as commonly used size measures and proposed physical
capacities, such as the square footage (area) available for an organization’s activities, as a
possible measure [20]. Recent research on corporate finance mentions total assets, sales,
market value, and the number of employees [19]. Meanwhile, the econophysics school
of research has used sales, number of employees, total assets, net sales, net income, and
number of trading partners (i.e., the reported number of firms that a firm directly trades
with) [12,23,35]. Finally, as small and medium enterprises are legally defined according to
their capital stock in Japan [36], capital stock data are widely available for Japanese firms,
which is the subject of the database used in our study.

We considered only the firm size measures that did not take negative values and were
readily measured for almost all firms. The former criterion concerns the very notion of
size in broader contexts. For instance, when the size of an animal body is considered, it
is non-negative whether it is measured by weight, length, or how many calories per day
it takes for the organism to live. We excluded net assets, net sales, and net income based
on this criterion, as these measures can take negative values. Other implications of the
concept of a size measure include positive correlations to other size measures—e.g., the
weight of a human body is usually positively correlated to the height—but this was not
incorporated into our criteria due to the empirical nature of the question. We set the latter
criterion pragmatically, allowing us to preserve the comprehensiveness of our original data
and to minimize the sampling bias. Market value was rejected with this criterion because
data were unavailable for firms that were not publicly traded, which comprised the vast
majority by number. Thus, the measures of corporate size that were referred to in the
literature and that met our criteria were sales, total assets, invested capital, capital stock,
and the numbers of employees and trading partners. We omitted invested capital from our
analysis because of its partial conceptual overlap with capital stock, relative scarcity of the
data, and its rare appearance in the literature as a size measure.

2.2. Data and Preprocessing

The source of the data used in this study was a collection of brief descriptions of
Japanese business firms, including the financial status, type of business, and physical
location, and this was provided and maintained by a major Japanese private credit reporter,
Teikoku Databank, Ltd., Japan (hereinafter referred to as TDB). The data were mostly based
on annual questionnaires presented to Japanese business firms.

The data employed in this study were primarily from the electronic version of the
COSMOS 2 database, which is updated every January by TDB. This database describes
over two million business firms in Japan and includes two sub-databases: (1) “summaries”
of firm profiles, including the sales, capital stock, number of employees, and business type
category (approximately one million per year, from 1980) and (2) lists of several million
trading relationships between firms for each year since 1993. The profile of the trading
relationships included the direction of money flows, i.e., which firm (buyer) paid which
(supplier). Our study was focused on the data after 1993, in which the COSMOS 2 database
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started to capture the trading relations between firms. We excluded the 1993 data to avoid
boundary effects that may have been present at the beginning of the data collection. The
data for sales, number of employees, and trading relations that we employed were last
updated in January 2017, whereas the data for the capital stock were compiled in January
2020. This confined our analysis to the period ending in 2015 because the 2016 sales were
not available for a substantial portion of the firms. Data for the total assets were from the
COSMOS 1 database by TDB, in which financial statements of firms were included. This
database was last updated in May 2020, and data since 2000 were available to us. Each firm
has a unique anonymous ID that allows the firm to be identified in different databases.

To ensure time coherence between different types of data and to make the included
firms sufficiently homogeneous for the purpose of our analyses, we performed several
data-compilation steps, as follows. First, we excluded the firms that were categorized
as governmental (e.g., local governments) or financial (e.g., banks and insurers). This
is because the definition of sales for these “firms” differed significantly from that for
construction, manufacturing, and wholesale firms, which constituted the majority of the
firms in the data. In this step, we filtered out possible outliers in the database. This
procedure was applied to both databases. Second, we did not use sales and capital stock
data from financial statements published more than 8 years before data entry or without an
adequate timestamp. Third, we set the sales to be unknown when the end of the fiscal year
had changed because some such data were apparently not the annual sales (the value was
sometimes considerably lower than those in previous or subsequent periods), whereas we
accepted the data of capital stock and total assets in such cases if more than one instance
of inconsistent data did not appear for the same year. Fourth, we determined the year to
which a datum of sales, capital stock, or total assets was assigned according to the year
in which the fiscal term ended. For example, when a firm had a fiscal year that started in
April 2000 and ended in March 2001 (as for the majority of Japanese firms), the sales value
of the fiscal term was considered to belong to the year 2001, regardless of whether the data
appeared in the database in 2002 or later. In contrast, this principle was not applied to the
employee or trading data; we always assigned them to the year prior to the data entry,
because the COSMOS 2 database was updated in January of each year.

We directly used the raw data without normalization or adjustment for inflation. The
number of trading partners of a firm was determined by counting the trading relations
in which the firm participated throughout the year, regardless of whether the firm was a
supplier or a buyer. This amounted to computing the sum of the in-degree and out-degree
for each node in the directed network of trading.

The data for firm exits were additionally compiled to estimate the number of firm
entries and exits. First, if any data of a firm existed in the COSMOS 2 database for a year,
the firm was considered to exist in that year. Additionally, when the data of a firm were
unavailable for up to two consecutive years, the firm was considered to exist in these years,
assuming that its absence from the data was accidental. Before the compilation of the exit
data, the first and fourth steps of data exclusion described earlier for the compilation of
quantitative data were applied to ensure consistency between the datasets.

When multiple variables were used in the analyses, we excluded the data of firms that
lacked any one of the variables. Results for the data amount are presented in Section 3.1
and tabulated in Table S1.

3. Results
3.1. Characterization of Databases and Size Measures

The amounts of data before and after the compilation are plotted in Figure 1 with
respect to the years in the 1994–2015 period. The amount of data generally increased.
The number of firms with complete data for multiple size measures in the COSMOS 2
database (i.e., number of trading partners k, number of employees `, and annual sales s)
was more than 0.8 million per year in 1999 and later, and the data for total assets a were
more than 0.2 million per year in 2004 and later, as shown in Figure 1a, after the filtering
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procedure described in Section 2.2. The number of firms considered to be existing based on
the COSMOS 2 database was usually larger than the number of firms in the sub-database
of sales and employees, as existence was assumed for some firms that only appeared in
the trading data or those with temporarily missing data. Two sudden increases in the
number of trading data (2007–2008 and 2010–2011) are observed in Figure 1b. The second
jump was due to trading data involving financial or governmental organizations, as we
observed no jump in the same period after the filtering. In contrast, the first jump was the
consequence of revised data-collection methods that were specific to trading-relations data;
trading relationships that had been mentioned only in on-demand reports started to be
included in the database in 2008. Indeed, there was no comparable jump in the number of
“summary” profile data. Additionally, the number of exiting or disappearing firms was
stable compared with the number of entering firms, as shown in Figure 1c, implying that
the former was less affected by the fluctuation of the data-collection efforts by TDB.

Figure 1. Changes in the data amount for the period 1994–2015. (a) Data amount for the original COSMOS 2 database
(black dots), number of existing firms after the filtering and integration with network data (upward triangles), number
of firms with data of all the three variables of sales, number of employees, and number of trading partners equal to or
larger than one (downward triangles), and number of firms with total asset information in the COSMOS 1 database after
the filtering (cross marks). (b) Data amount (number of links) for the original trade database (dots) and after the filtering
(circles). (c) Numbers of entering (upward triangles) and exiting (downward triangles) firms. The number of existing firms
(dots) is plotted for comparison. The vertical axis is in the logarithmic scale.
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All the size variables were distributed in fat-tailed manners on the right side, as shown
in Figure 2. Their distribution functions for every year are plotted in the figure, with the
color gradient from blue through black to red, indicating the direction from older data
to newer ones. The distributions were fairly stable despite the increase in data and, in
particular, the exponents of the power–law tails were evidently invariant when the tails
could be approximated by a power–law distribution. They were –2.2 for k (the number of
trading partners), –2.2 for ` (employee number), –2.0 for s (annual sales in million yen),
and –1.85 for a (total assets in thousand yen). The exponent of the sales distribution was
consistent with that in previous studies [13–15]. The distribution of capital stock (hereafter
denoted by p) was also fairly fat-tailed, although it did not seem to be characterized by
a power law because the curve of the estimated density function was convex, as seen in
Figure 2e. Consequently, the arithmetic mean of s and a did not indicate the representative
value, and the standard deviation of all the variables was not a robust index of the width of
the distribution (Table S1). We alternatively indicated the representative value and width of
distribution by the median and the interquartile range, respectively, as shown in the table.
However, these values were only representative of firms of middle-range sizes, not the ones
at the tails, which were characterized by power–law distributions and scaling trelations.

The capital stock was unique because the right tail did not exhibit a power law and
there were multiple modes near the median value. A manual inspection of the data revealed
that these multiple modes were the result of preference for rounded values such as 10,000.
This phenomenon was also notable in other published data [36].

3.2. Bivariate Scalings between Size Measures

The dependencies between the size measures of business firms were characterized in
terms of bivariate “allometric” scaling relations in a previous study [23], and we visualized
them using the method described in the study. The data in the previous study were
gathered by a credit reporting company independent of TDB. However, we expected the
results to be similar between the two datasets, as the data were collected for the same
system (Japanese firms).

Bivariate allometric scaling is denoted by x ∝ yγ, where γ represents the exponent,
and x and y are two different size measures. We first consider the three size measures
studied previously: the number of trading partners (k), number of employees (`), and
annual sales in millions of yen (s). As described in the previous study [23], the concept of
allometric scaling relations incorporates scale-invariant relative fluctuations and is defined
in terms of conditional distributions:

P(l|k) = P̃l|k(l/kγ1)/kγ1 , (1)

P(s|k) = P̃s|k(s/kγ2)/kγ2 , (2)

P(s|l) = P̃s|l(s/lγ3)/lγ3 , (3)

where P(x|y) represents the probability density function of variable x conditional on a
specific y-value; γ1, γ2, and γ3 represent the scaling exponents; P̃x|y represents a scaling
function for variable x conditional on the y-value, which indicates the distribution of the
fluctuation ratio around the scaling line, x ∝ yγ.
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Figure 2. Probability distribution function (PDF) of the size variables for the period 1994–2015. The figures are plotted on
log–log scales. Numerals near the dashed lines indicate the slope of the lines. The blue-to-red gradient of the color indicates
the direction from old to new data. (a) Number of trading partners. (b) Number of employees. (c) Annual sales in millions
of yen. (d) Total assets in thousands of yen. (e) Capital stock in thousands of yen. Data of total assets are plotted for the year
2000 or after, where the data were available.
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All the probability distribution functions of the three size variables (k, `, and s) were fat-
tailed for large values in each year (see Figure 1a–c and Table S1). To avoid extreme values,
which are usually observed in variables distributed in such a manner, we log-transformed
the raw size data so that the variables were exponentially distributed. After the log-
transformation, Equations (1)–(3) were more intuitive linear regression-type formulae, as
discussed in detail in Appendix A:

log l = γ1 log k + ε l|k, (4)

log s = γ2 log k + εs|k, (5)

log s = γ3 log l + εs|l . (6)

Here, the error terms, ε l|k, εs|k, and εs|l , can be regarded as stochastic variables that
correspond to P̃l|k, P̃s|k, and P̃s|l , respectively. The mean of these “error terms” is gen-
erally not equal to zero, and the intercept term (as it is called in regression analysis) is
included among them. These bivariate scaling laws, presented in a previous work [23],
can be naturally interpreted as projections of a single three-dimensional scaling line onto
two-dimensional planes, as illustrated in Figure 3a, around which the firms are densely
distributed [37]. A similar concept of multivariate scaling was used in a study on the
morphology of organisms [38].

Figure 3. Schematics of the scaling relations. A firm is represented as a point in the three-dimensional phase space. Variables
k, `, and s represent the number of trading partners, number of employees, and annual sales, respectively. (a) Multivariate
scaling s∝kα`β is illustrated as a plane (red solid line). (b) Three bivariate scaling relations (indicated by the dashed lines)
can be understood as projections of a single (red bold) “scaling line.” The plane in panel (a) must include the scaling line
(red dashed), but this line clearly cannot determine a unique plane.
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To test the validity of these relations (Equations (1)–(6)) in our data, we examined both
the conditional quantiles and the distributions of the error terms, where the conditional
quantile was defined as follows: for any given number, q, in the range of (0, 1), the q-quantile
of x conditional on y, which is denoted as 〈x|y〉q, satisfies the following equation:

∫ 〈x|y〉q
0

P(x|y)dx = q. (7)

If Equations (1–6) hold, all the quantiles of the same q-value conform to the power–law
relation, 〈x|y〉q ∝ yγ, and the curves of 〈x|y〉q plotted against y for different q-values
should collapse into a single curve when vertically shifted. Furthermore, the distributions
of x/〈x|y〉0.5 conditional on y should be identical for all y-values and amount to the
distribution specified by P̃x|y with normalization by its median.

As shown in Figure 4a–c, the plots of log 〈x|y〉q vs log y indicated linear relations for
a wide range of y, indicating that the power–law relation, 〈x|y〉q ∝ yγ (abbreviated as
x ∝ yγ), holds for all combinations of k, `, and s. In Figure 4d–f, the distribution of relative
fluctuation from the conditional median (x/〈x|y〉0.5) is plotted for eight intervals of equal
length on the logarithmic scale of y. All the curves collapse into a single “scaling function”
for all three cases, validating the scaling relations of Equations (1)–(3).

We next examined the total assets, a, with regard to k, `, and s. The relation between k
and the quantiles of a (〈a|k〉q) was not clearly linear, being slightly curved in a logarithmic
plot, as shown in Figure 5a; however, the distributions of relative fluctuations from the
conditional median (a/〈a|k〉0.5) were almost independent of k (Figure 5d). More obvious
allometric scaling can be seen for `–a (Figure 5b,e) and s–a (Figure 5c,f) relations. The
total assets seemed to scale superlinearly with ` (γ > 1) and linearly with s (γ = 1). The
power–law scaling exponents of a with regard to ` and s are hereafter denoted by γ4 and
γ5, respectively. Note that the distributions of relative fluctuations of a (i.e., a/〈a|s〉0.5)
were wider for small values of s (blue curves) than for large values (red curves), as seen
in Figure 5f. We also noted an increase in a slightly larger than a linear function of s for
sales values more than 105. Therefore, allometric scaling most precisely approximated
the s–a relation for the range of s between 102 and 105. We conclude that total assets
scaled allometrically with ` and s, and the relation between a and k did not conform to the
allometric scaling.

The capital stock, p, was not found to be in an allometric scaling with any of k, `, s, or
a, as shown in Figure 6. The vertically shifted curves of conditional quantiles did not agree
for k–p, `–p, and s–p relations (see Figure 6a–c), indicating that the forms of conditional
distributions of p differed substantially as the values of k, `, or s varied. Whereas the a–p
relation appeared to be close to allometric in the plot of conditional quantiles, as shown
in Figure 6d, the conditional relative fluctuations (p/〈p|a〉0.5) were not constant over the
range of a (Figure 6e).
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Figure 4. Scaling relations between pairs of measures: number of trading partners k, number of employees `, and annual
sales in millions of yen s. All the data used in the figures are for 2014. (a–c) 0.95(5), 0.75(+), 0.5(×), 0.25(3), and 0.05(4)
quantiles of the conditional distribution of ` or s (vertical axis) are plotted against another variable k or ` (horizontal axis) on
a log–log scale. The horizontal axis is divided into intervals of identical lengths on the log scale (6 segments per a 10-fold
interval such as 10–100) for k and ` values of >10 and intervals of length unity on the linear scale for k and ` values of ≤10.
Quantiles other than those of q = 0.5 (i.e., medians) are plotted with horizontal shift, so that all the curves pass through a
point whose x-axis is slightly above 100. (d–f) Probability distributions (PDFs) of ` or s conditional on k or ` (i.e., P(l|k),
P(s|k), and P(s|l) ) for 8 different “bins” (i.e., mutually exclusive intervals) of the “explanatory” variable (k or `), normalized
by their conditional medians, plotted on a log–log scale. The bins are obtained by evenly dividing the entire range (from the
minimal value of unity to the maximum value of the variable shown in Table S1) into eight segments on the logarithmic
scale. The color gradient of blue to red indicates low to high values of the explanatory variable.
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Figure 5. Scaling relations between total assets in thousands of yen a and number of trading partners k, number of employees
`, and annual sales in millions of yen s. All the data used in the figures are for 2014. (a–c) Vertically shifted quantiles of the
conditional distribution of a (vertical axis) are plotted against another variable k, `, or s (horizontal axis) on a log–log scale.
(d–f) Probability distributions (PDFs) of a conditional on k, `, or s (i.e., P(a|k), P(a|`), and P(a|s), respectively) for 8 different
“bins” of the “explanatory” variable (k, `, or s), normalized by their conditional medians, plotted on a log–log scale. See the
caption of Figure 4 for details on plotting.
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Figure 6. Scaling relations between capital stock and number of trading partners k, number of employees `, annual sales
in millions of yen s, and total assets in thousands of yen a. All the data used in the figures are for 2014. (a–d) Vertically
shifted quantiles of the conditional distribution of p (vertical axis) are plotted against another variable k, `, s, or a (horizontal
axis) on a log–log scale. (e) Probability distributions (PDFs) of p conditional on a (i.e., P(p|a)) for 8 different “bins” of the
“explanatory” variable (a), normalized by their conditional medians, plotted on a log–log scale. See the caption of Figure 4
for details on plotting.
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3.3. Explaining Puzzling Scaling Exponents

Next, we studied the open question of the different power–law exponents in the
conditional and marginal sales distributions, which has not been addressed previously.
This is related to the asymmetric levels of relevance of the numbers of employees (`) and
trading partners (k) to the firm sales (s), as described in the following section.

It is well established that the distribution of annual sales s of firms roughly follows
Zipf’s law [13–15]; i.e., the probability density tail follows a power law, P(s) ∝ s–2. This was
also observed in our data (see Figure 2c). However, for the conditional sales distributions,
the power–law exponents increased to approximately 2.4 (for the number of trading
partners (k); see Figure 4e) and approximately 2.7 (for the number of employees (`); see
Figure 4f), substantially varying from 2.0 (see Figure 7).

Figure 7. Apparent inconsistency of the power–law tail exponents for marginal and conditional PDFs, with an intuitive understanding
based on Bayes’ theorem. Conditional probability distributions (a) P(s|`) and (b) P(s|k), weighted with P(`) and P(k) (see Equation (12)),
respectively, plotted on log–log scales. The entire range of k and ` is divided into eight levels corresponding to eight curves, so that
each interval has an identical range on the logarithmic scale. The weight of an interval is defined as the average probability density in
the interval. All the data used in the figures are for 2014.

These seemingly contradictory results are explained by Bayes’ theorem. Considering
number of employees ` and annual sales s, we can approximate the integral of P(s|`)P(`)
with respect to ` using the maximum values of P(s|`)P(`):

P(s) =
∫
`

P(s|`)P(`)d` ∼ P(s|`lead)P(`lead)∆`lead, (8)

where `lead = argmax`P(s|`)P(`), such that P(s|`lead)P(`lead) is the “leading order” contri-
bution, and ∆`lead is the width of ` at `lead, which is assumed to be a constant. In Figure 5a,
the functional form of P(s|`)P(`) is plotted for several typical values of ` based on real data.
As shown, the envelope function of P(s|`)P(`) followed a power law with an exponent
close to –2.0 at its tail. Similar results were obtained for the number of trading partners (k),
as shown in Figure 5b. A more rigorous derivation is presented in Appendix B.

Because the scaling relations between the size variables, i.e., `∝k1.0, s∝k1.2, and s∝` 1.2

(see the following sections for the determination of these exponents), suggest symmetric
relevance of k and ` to annual sales s, it is surprising that different exponents of the power–
law tails for different conditional distributions (shown in Figure 5a,b) suggest strong
asymmetry between the levels of relevance of k and ` to s. We discuss this novel feature in
more detail in the next section in connection with a trivariate scaling relation.
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3.4. Multivariate Scaling with Scale-Invariant Fluctuation

So far, we have studied bivariate relations between size measures of business firms. In
spite of the intuitive picture of triple bivariate scalings as the two-dimensional projections
of a single three-dimensional scaling line (Figure 3b), the transitivity of allometric scalings
is not theoretically guaranteed; for example, ` ∝ kγ1 and s ∝ `γ3 does not necessarily
mean k ∝ sγ1γ3 . Although the transitivity might be justified if the distribution of s is
constant for an `-value regardless of the k-value, such an assumption directly contradicts the
previous results [23]. Therefore, trivariate relations should be considered to understand the
theoretical basis of the transitivity of allometric scaling relations in the empirical datasets.

We first inspected the scaling of annual sales s with regard to the numbers of trading
partners and employees, k and `. Our analysis assesses the relative relevance of the number
of trading partners (k) and the number of employees (`) to the prediction of annual sales s.
We generalize the allometric scaling relations to a multivariate relation, as follows:

log s = α log k + β log `+ εs|k,` (9)

or
P(s|k, `) = P̃s|k,`

(
s/kα`β

)
/kα`β, (10)

where α and β are the scaling exponents indicating the relative relevance of k and `,
respectively; εs|k,` is a stochastic fluctuation term of log s conditional on both k and `;
P(s|k, `) represents the conditional probability density, which is dependent on both k and
`; P̃s|k,` represents the scaling function. This multivariate scaling relation was proposed
in [23] but not confirmed directly by real data. Assuming that Equation (7) is satisfied, the
median value can be straightforwardly derived:

log 〈s|k, `〉0.5 = α log k + β log `+
〈

εs|k,`

〉
0.5

, (11)

where 〈s|k, `〉0.5 represents the median value of s conditional on a specific set of k and ` val-
ues. If Equation (9) holds, the contour plots of conditional median sales 〈s|k, `〉0.5 on the k-`
logarithmic coordinate plane should exhibit nearly regular and parallel contours. Because〈

εs|k,`

〉
0.5

in Equation (9) is a constant, the multivariate scaling relation can be represented
by a plane, as shown in Figure 3a. Importantly, this differs from the “scaling line” [37],
which is implied by the three scaling relations for the pairs of variables (Figure 3b).

Although the relation is not a perfect plane but a surface because it is curved in
the high-k and low-` regions, as shown in Figure 8a, the data support the scaling of
conditional median sales against the k and ` values (Equation (9)), particularly for medium
or large values. Moreover, the statistical fluctuations around the median value are clearly
independent of k and ` (Figure 8b). These facts indicate that the assumption of scaling
represented by Equation (8) is valid for most k and ` values. When the distribution of
scaled sales s/kα`β conditional on k and ` was plotted using the values of α and β estimated
according to the data (Figure 8c), a remarkable fraction of the curves scaled with each other.
Additionally, function P̃s|k,` was surprisingly stable across the years (Figure 8d). Thus,
the scaling assumptions of Equations (7) and (8) are well supported by a large amount of
available data.



Entropy 2021, 23, 168 15 of 31

Figure 8. Multivariate scaling relations of annual sales s against number of trading partners k and number of employees
`. The plots in all the panels are on a log–log scale and present results for the 2014 data, unless otherwise mentioned.
(a) Contour plot of the median values of annual sales s in millions of yen, conditional on both the number of trading
partners, k (horizontal), and the number of employees, ` (vertical). The entire ranges of k and ` are divided into eight levels,
so that each interval has an identical range on the logarithmic scale. The contours are obtained by linearly interpolating the
log-transformed median sales values. Data of the conditional median from a grid with less than 10 samples were omitted in
the plot. (b) Probability distributions (PDFs) of s conditional on both k and `, normalized by their medians. The conditional
distributions are obtained for grids of the conditioning variables where both dimensions are divided into intervals of
identical length on a log scale (2 segments per a 10-fold interval). (c) PDFs of scaled sales s/kα`β conditional on both k and
`, where α and β represent the estimated exponents. The binning method of k and ` is identical to that for panel (b). Red
lines indicate the marginal probability distribution of s/kα`β. (d) Probability distributions of s/kα`β for each of the 22 years
(1994–2015), normalized with respect to the medians. The exponents used are the estimated values for each year, as shown
in Figure 10c.
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The scaling exponent for k (α) was smaller than the scaling exponent for ` (β), as
indicated by the moderate slopes of the contours compared with –1.0 in Figure 8a. We
quantitatively verify this statement in the following section. This finding can be linked to
the asymmetricity of k and `, as discussed in the previous section. In view of the magnitude
of errors or fluctuations around the scaling relations, the distribution of residuals (εs|k and
εs|`, as defined in Equations (5) and (6)) was more fat-tailed when s was regressed against
k (P̃s|k(s̃) ∝ s̃−2.4; see Figure 4e) than when s was regressed against ` (P̃s|`(s̃) ∝ s̃−2.7; see
Figure 4f). This difference in the tails of the error distributions implies that the number
of trading partners (k) was less useful in predicting the sales value than the number of
employees (`), which was indeed the case.

The trivariate allometric scaling, s∝kα`β, along with ` ∝ kγ1 and a power–law tail of
the distribution of k, is sufficient to derive s ∝ `γ3 and k ∝ sγ1γ3 asymptotically under
fairly mild assumptions (see Appendix B). In other words, the transitivity of bivariate
scaling relations depends on whether the trivariate allometric scaling holds among the
variables. We compared the triplets of (k, `, a) and (`, s, a) to exemplify this point. Note
that the transitivity held among the latter but not among the former, because allometric
scaling holds between k and ` and between ` and a, but not between k and a. We expected
that the tri-variate allometric scaling would hold only for the latter. The results for these
combinations of variables that are analogous to Figure 8b are plotted in Figure 9a–d.
Although the deviations of a from the conditional median were independent of k and
` (panel (b)), the contour curves representing the conditional median of a were notably
curved against k and ` (panel (a)). In contrast, contours for a conditional on ` and s were
straight, parallel to each other, and evenly spaced (panel (c)), and most of the deviations
might be approximated by a single function (panel (d)). Therefore, the trivariate scaling of
a with regard to ` and s can be approximated by the following equation:

log a = α′ log `+ β′ log s + εa|`,s. (12)

However, the trivariate scaling among k, `, and a cannot be described in an analogous way
as expected.

Finally, we inspected the trivariate scaling of the capital stock, p, against other size
measures. The results for the three variables (`, s, p) are shown in Figure 9e,f. Both figures
indicate clearly that these three variables were not in an allometric scaling, as we can expect
from the non-allometric bivariate scaling property of p discussed in Section 3.2.

3.5. Robust Estimation of Scaling Exponents

Using the trivariate scaling with a scale-invariant relative fluctuation, we can derive
several mathematical relations between the scaling exponents (see Appendix B). Here, we
show that these relations allow the asymptotic scaling exponents to be estimated robustly
against scaling for small firms that does not conform to the power law.

By assuming the trivariate scaling formulated by Equation (7), bivariate scaling of a
similar form between k and `, and power–law tails of several conditional and marginal
distributions, we can determine the joint probability distribution of k, `, and s. Thus, one
can obtain a set of relations between numerous scaling exponents. Central to these are

γ2 = α + βγ1, (13)

and
γ3 = (α + βγ1)/γ1, (14)

where γ1, γ2, and γ3 represent the k–`, k–s, and `–s scaling exponents, respectively (see
Appendix B for the derivations). These theoretical equations are useful for estimating the
exponents, as determining the threshold size over which the behaviors of firms can be
approximated as asymptotic is critical to such an estimation. The aforementioned relations
are satisfied only when the data with k < 100 or ` < 100 are excluded (see below), indicating
that firms do not follow exactly the same power–law scaling below and above the threshold.
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Figure 9. Multivariate scaling relations among number of trading partners k, number of employees `, annual sales s,
total assets a, and capital stock p. The plots in all the panels are on a log–log scale and present results for the 2014 data.
(a) Contour plot of the median values of total assets a in thousands of yen, conditional on both the number of trading
partners, k (horizontal), and the number of employees, ` (vertical). (b) Probability distributions (PDFs) of a conditional
on both k and `, normalized by their medians. (c,e) Contour plot of the median values of total assets a or capital stock p
in thousands of yen, conditional on both the number of employees, ` (horizontal), and the annual sales, s, in millions of
yen (vertical). (d,f) Probability distributions (PDFs) of a or p conditional on both ` and s, normalized by their medians. In
contour plots, the entire ranges of the horizontal and vertical axes are divided into eight levels, so that each interval has an
identical range on the logarithmic scale. See the caption of Figure 8 for further details on plotting.
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We observed deviations from the scaling relations, particularly when the number of
trading partners (k) and the number of employees (`) were less than 10 or the annual sales
(s) were less than 100 (Figure 4a–c, Figures 5a–c and 8a; also see [37]). Because smaller
firms dominated the data (Figure 2), their deviation from the scaling relations substantially
affected the estimation of the scaling exponents. When all the available data were included
in the regression analyses, there was a clear difference between the expected value of γ3
(dashed purple line) based on Equation (11) and the value obtained via direct estimation
(solid purple line), as shown in Figure 10a.

Figure 10. Estimated exponents of the trivariate scaling relations of s against k and ` for the period 1994–2015. Estimated
exponents γ1 in ` ∝ kγ1 (green), γ2 in s ∝ kγ2 (blue), γ3 in s ∝ `γ3 (purple), and α (black) and β (red) in s ∝ kαlβ are plotted.
Additionally, the expected values of γ2 and γ3 derived mathematically from α, β, and γ1 in the case of perfect scaling
(Equations (10) and (11)) are juxtaposed (blue and purple dashed lines, respectively). (a) All the available data are used to
estimate the exponents. (b) Only the data for which the “explanatory” variable is >10 are used. (c) Only the data for which
the “explanatory” variable is >100 are used. (d) Plot of the size of samples from which the exponents are estimated against
the year. The black, brown, and red points indicate the thresholds of 0 (no exclusion), 10, and 100, corresponding to panels
(a–c), respectively. The hollow (#) and filled (•) circles and upward (4) and downward (5) triangles represent the scaling
of ` vs. k, s vs. k, s vs. `, and s vs. k and `, respectively.
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We performed a standard regression analysis using R (ver. 3.1.2) to estimate the
scaling exponents in the bivariate and multivariate scaling relations of the firm data. See
Appendix A for the rationales for applying the regression analysis to the problem of esti-
mating scaling exponents of power–law relations with scale-invariant relative fluctuations.
To reject the data of small firms that did not fit the “linear” assumption of the model, we
excluded the data with low values of “explanatory” variables in the regression formulae
by applying a threshold. We used two values for possible thresholds: 10 and 100. The
threshold was determined according to the consistency of the resulting multivariate scaling
exponents with the bivariate ones. If the “explanatory” variables on the right-hand sides
of Equations (4)–(7) were below the threshold, the datum was neglected. Although a
considerable proportion of the data might be excluded from the analysis, this process
ensured that the final set of exponents conformed to the model assumptions.

The results of regression of s against k and ` using thresholds of 10 and 100 are
presented in Figure 10b,c, respectively. As shown, γ1 nearly reached 1.0, and the direct and
indirect estimates of γ3 agreed only when the threshold was set as 100. This suggests that
the threshold should be≥100 for k and `. We preferred to employ a smaller threshold value
owing to the large sample size; thus, we adopted the value of 100. The sample sizes, before
and after the threshold was applied, are shown in Figure 10d. After the threshold of 100
was applied, as shown in Figure 10c, the estimated γ1 value was between 0.94 and 1.06, and
the estimated γ2 and γ3 values were both between 1.14 and 1.25. We estimated the values
of these exponents (averaged for the entire period) as γ1 ≈ 1.0, γ2 ≈ 1.2, and γ3 ≈ 1.2.
However, the slow and systematic fluctuations of the estimated α (black line) and β (red
line) values, i.e., the trivariate scaling exponents defined in Equation (7), were noticeable.

Despite our use of linear regression, estimation of the uncertainty requires a nonpara-
metric method, because the “error terms” are not normally distributed even with their
homoscedasticity. Thus, we used the bootstrap method [39] to determine the confidence
intervals (CIs). Resampling was performed 10,000 times, and the resampling size was
identical to the sample size. The 95% CIs were determined as the 2.5- and 97.5-percentiles
of the bootstrap distribution.

Considering the uncertainty of the estimations, our finding of β > α was true for all
the years, as shown in Figure 12a, where the estimated scaling exponents for different years
are plotted with the uncertainties based on the bootstrap method. For example, the results
for 2014 were α = 0.49 (95% CI (0.455, 0.531)) and β = 0.72 (95% CI (0.697, 0.744)). Thus,
we conclude that the number of employees (`) has a higher relevance to sales s than the
number of trading partners (k).

Although the changes were not large and inequality α < β was invariably satisfied,
exponents α and β became smaller and larger, respectively, in the 2000–2005 period com-
pared with the 2013–2015 period. The difference was “significant” in the sense that the 95%
CIs did not overlap. Additionally, α and β were negatively correlated, which we expected
from Equation (10) and the relatively robust γ1 and γ2 (Figure 10c).

We then applied the aforementioned procedure to the trivariate scaling of total assets
a with ` and s. The results are shown in Figure 11. In contrast to the scaling of s with
k and `, there was no obvious improvement in the estimation of α′ and β′ by the use of
thresholding. This should be related to better fitting of the trivariate data of (`, s, a) to
the scaling surface hypothesis (see Figure 3a) compared to the (k, `, s) data, as seen in
Figures 8a and 9c. The degree of the time variation of α′ and β′ was noticeably smaller in
the (`, s, a) data than in the (k, `, s) data. The estimated α′ (exponent for `) and β′ (exponent
for s) values were between 0.17 and 0.24 and between 0.82 and 0.92, respectively, in all years
and for all threshold values that we applied. In contrast, the bivariate scaling exponents
were estimated without data with the s- or a-value less than 100 to exclude the data that
did not conform to the power law, as seen in Figure 5b,c. Therefore, the final values of
estimated γ4 (for `–a scaling) and γ5 (for s–a scaling) were between 1.16 and 1.19 and
between 1.01 and 1.04, respectively, as shown in Figure 11c.
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Figure 11. Estimated exponents of the trivariate scaling relations of a against ` and s for the period 2000–2015. Estimated
exponents γ3 in s ∝ `γ3 (green), γ4 in s ∝ `γ4 (blue), γ5 in a ∝ sγ5 (purple), and α′ (black) and β′ (red) in a ∝ `α′ sβ′ are
plotted. Additionally, the expected values of γ4 and γ5 derived mathematically from α′, β′, and γ3 in the case of perfect
scaling (Equations (10) and (11)) are juxtaposed (blue and purple dashed lines, respectively). (a) All the available data are
used to estimate the exponents. (b) Only the data for which the “explanatory” variable is >10 are used. (c) Only the data for
which the “explanatory” variable is >100 are used. (d) Plot of the size of samples from which the exponents are estimated
against the year. The black, brown, and red points indicate the thresholds of 0 (no exclusion), 10, and 100, corresponding to
panels (a–c), respectively. The hollow (#) and filled (•) circles and upward (4) and downward (5) triangles represent the
scaling of s vs. `, a vs. `, a vs. s, and a vs. ` and s, respectively.

3.6. Scaling Exponents Related to National Economic Conditions

As indicated in the previous section, there were significant changes (i.e., changes be-
yond the CI) in α and β during the period 1994–2015, although the source of this fluctuation
remains to be explored. Here, we only test the hypothesis that national macroeconomic
conditions are related to the changes in these scaling exponents.

Interestingly, α and β appeared counter- and pro-cyclical, respectively; i.e., they were
apparently positively and negatively correlated to the nominal GDP of the country [40],
respectively, as shown in Figure 12a. The GDP was selected here because its fluctuation
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cycle is longer than those of other economic indices, such as the Indexes of Business
Conditions reported by the Cabinet Office of the Government of Japan [41]. A closer
inspection revealed that α was enlarged when the nominal GDP decreased (Figure 12b) and
that β decreased almost simultaneously with the GDP, whereas its increase was delayed
with respect to the GDP expansion (Figure 12c).

Figure 12. Estimated exponents α (for number of trading partners k) and β (for number of employees `) with the country’s
nominal GDP for different years in 1994–2015. (a) Estimated exponents α (for number of trading partners k) and β (for
number of employees `) and the country’s nominal GDP for different years in the period 1994–2015. The bandwidths
indicate the 95% confidence interval of the estimation obtained via the bootstrap method. (b) Estimated α with respect to
the GDP. The arrows indicate the direction of time evolution. (c) Estimated β with respect to the GDP. (d) Cross correlations
between the nominal GDP and α or β are plotted with respect to the time lag.
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We calculated the cross-correlation between the national GDP and the scaling ex-
ponents to evaluate the delay of the effect of the former on the latter. The normalized
cross-correlation, CCτ [x, y], was defined by the Pearson’s correlation coefficient applied to
lagged time-series data x(t) and y(t + τ) defined for discrete time t0 ≤ t(∈ Z) ≤ tend:

CCτ [x, y] ≡ 1
N−1 ∑Tτ

x̃(t)ỹ(t + τ)/
√

1
N−1 ∑Tτ

x̃(t)2
√

1
N−1 ∑Tτ

ỹ(t + τ)2 (15)

where Tτ ≡ {t ∈ Z|t0 + τ ≤ t ≤ tend + τ}, N represents the length of the time series
(the number of elements in truncated set Tτ), and

x̃(t) ≡ x(t)− 1
N ∑Tτ

x(t) and ỹ(t) ≡ y(t)− 1
N ∑Tτ

y(t). (16)

As shown in Figure 12d, we plotted the cross correlations, CCτ [GDP, α̂] and CCτ

[
GDP, β̂

]
,

with respect to τ (the time lag in years) to quantify the delay of the changes in the estimated
α and β values with respect to the GDP. Both the cross correlations peaked at τ = 1 (nega-
tively and positively, respectively), with Pearson correlation coefficients as large as –0.59
and 0.58. The second-highest peak was present in both cross-correlation series, indicating
that the extent of the delay in the exponent changes differed between the increasing GDP
and the decreasing GDP. The reversal of the sign at a τ value far from 0 was an artefact of
the time window, which covered only slightly more than one economic cycle. The foregoing
results suggest that the exponents can be predicted using the GDP of the preceding year.
However, we could not eliminate the possibility that the correlations were mere coinci-
dences, as the dataset covered only slightly more than one business cycle. Considering that
the cycle was approximately 20 years long, an additional decade of data or a dataset from
another country may be needed to verify this trend.

We suspect that the relative importance of inter-firm trades in predicting sales is
mechanistically affected by the GDP. It is reasonable that in a recovering economy, selling
goods produced with labor is relatively easy, and increasing the number of employees
is advantageous for expanding production, which leads to an increase in β. In contrast,
in an economic depression, the trading partners to which the firm can sell products may
become more crucial for maintaining its sales; in such a situation, weight may be added to
α. However, this statement is not supported by the present study and is yet to be verified.

4. Discussion

We analyzed the multivariate scaling relations between firm size measures. First,
the marginal distributions of k, `, s, a, and p were examined, and the former four were
found to have a power–law tail while the right tail of the latter one did not exhibit a clear
power law. Second, we examined the bivariate relations between the size measures to
uncover that relations for pairs of k, `, s, and a could all be approximated by an allometric
scaling except the k–a relation, while the capital stock, p, was never in an allometric scaling
with other size measures. Based on the empirically verified model of allometric scaling,
seemingly inconsistent power–law exponents for the right tails of conditional and marginal
distributions were theoretically explained. Furthermore, theoretical considerations clarified
that the trivariate allometric scaling is related to the transitivity of bivariate allometric
scalings. This was exemplified by the comparison of trivariate data of (k, `, s) and (`, s,
a), which conformed to trivariate allometric scaling, with the data of (k, `, a) which did
not fit the allometric scaling model. Building on the theoretical development, a method
was proposed and applied to the data to estimate the scaling exponents for each year.
We observed only small variations when data from different years were compared. The
fluctuations of the scaling exponents α and β for the data of (k, `, s) during a 22-year period
apparently followed the country’s GDP.

We argue that our results might be highly valuable in making the existing research
results more robust and clearer. Some reported results regarding corporate finance were not
robust when different size measures were used as a control variable indicating corporate
size [19], suggesting that a single variable indicating the firm size is not sufficient to control
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the “size effects.” An allometric scaling between size measures, e.g., x∝yγ, means that the
fluctuation or deviation from the average relation (x/yγ) is independent of y. Therefore,
such an adjusted ratio between size measures in allometric scalings could be added to
analyses as a possible factor improving the robustness of the existing methods against
the use of alternative corporate size measures, bridging the studies using different size
measures of firms as a control variable.

Scaling relations for data of more than three measures of size were not examined in
our study. Although it is possible to conceive of such a theoretical development, empirical
verification of the statistical model for a high-dimensional space is expected to face a
difficulty known as the curse of dimensionality [42]. Furthermore, we do not expect theories
regarding four-dimensional allometric scaling to be useful in understanding empirical data,
since the allometric scaling was found to be broken in the three-dimensional data of (k, `, a).

The current analyses are based on aggregated data from all industries. It is highly
possible that firms in different industries or markets have different scaling relations. Nev-
ertheless, our results would still serve as a basis for investigating the characteristics of
different industries and markets, since the results can be regarded as representing average
behaviors of firms across different sectors, calculated from nearly the most comprehensive
dataset. Therefore, it would be a promising research direction to study the uniqueness of
different groups of firms relative to the average behaviors.

It is our current expectation that similar results could be obtained if it were possible
to conduct the same analysis on different datasets of business firms operating in areas
other than Japan. Tests of the reproducibility of our results would be highly valuable for
understanding the diversity and universality of business firms. While analysis regarding
the sales, total assets, and employees of firms can be performed with minimal effort owing
to the abundance of information, it would be more difficult to include the number of trading
partners because data related to trading between firms are often missing in existing datasets.
Text mining of published corporate reports may be a promising approach for compiling
datasets of inter-firm trading [43]. We also encourage the application of our method to
other systems that exhibit scale-invariant relative fluctuations, such as metropolises and
cities [44,45].

We confirmed that the fluctuation of s—conditional to k and l and relative to the
median—was invariant, directly verifying the hypothesis proposed in the previous work [23].
This scale-invariance of the relative fluctuation is highly suggestive of the similarity be-
tween firms of different sizes and the renormalizability of internal organizations or inter-
firm relationships with regard to complex networks [46,47].

Verifying previously hypothesized stylized facts and checking the mathematical con-
sistency of independently known power–law exponents help to validate or refute possible
theories regarding business firms. Numerous models [35,48–61] have been suggested to
explain only a few stylized facts relating to firms, and it appears that new criteria are
needed to select the models empirically. Thus, our results for multivariate scaling should
be incorporated into subsequent theoretical considerations. Theories for the scaling rela-
tions in other complex systems, such as animal bodies and cities, may benefit from this
study because fractal-like hierarchical organization is a pervasive design in such systems
(including business firms) [15,32,33,62]. However, the data are far more abundant for firms
than for other systems. The multidimensional notion of size may introduce prospects for
devising general theories and modeling principles for such complex systems.
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Appendix A. Rationales for Estimation of Scaling Exponents

Here, we consider the rationales for the estimations of the scaling exponents using the
standard regression analysis.

We begin with the bivariate scaling relations, which were formulated with Equations (1)–(3)
or (4)–(6) and confirmed to be present in our data:

P(x|y) = P̃x|y(x/yγ)/yγ,

where P(x|y) represents the probability density of x conditional on y, P̃x|y represents a
probability density function, and γ is a positive constant. When variable x̃ is defined as
x̃ ≡ x/yγ, we have

P(x̃|y) = P̃x|y(x̃),

given that the probability density should satisfy normalization
∫

P(x̃|y)dx̃ = 1. Variable x̃
does not depend on the y-value; thus, x̃ is independent of y.

This indicates that exponent γ can be estimated by finding the value that maximizes
the degree of independence of x̃ and y. One of the simplest indices for measuring the
dependence between stochastic variables is the Pearson’s product–moment correlation
coefficient. We can obtain γ̂, i.e., the estimated value of γ, as follows:

γ̂ = arg min
γ

(
Cor

[
log
(

x
yγ

)
, log y

])2
, (A1)

where Cor[·, ·] is the correlation coefficient of the two terms. We apply the log-transformation
to the raw data because the distribution of x conditional on y is heavy-tailed, as shown in
Figure 4d–f. In such heavy-tailed distributions, a few extreme values can substantially affect
the correlation coefficient compared with the case of the normal or exponential distribution.

The minimization of the absolute value of correlation coefficients amounts to the linear
least-squares regression of log x against log y. Indeed, when the correlation coefficient is
zero, the covariance is also zero, and if we apply transformations x ← x/x and y← y/y ,
where x and y represent the geometric means of x and y, respectively,

(N − 1)×Cov
[

log
(

x
yγ

)
, log y

]
≡∑i log yi × (log xi − γ log yi) = 0

or
∑i log xi × log yi = γ ∑i(log yi)

2. (A2)
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Here, Cov[·, ·] represents the covariance, N represents the number of samples, and xi
and yi represent the ith samples of x and y, respectively. When the residual sum of squares
is minimized,

∂

∂γ ∑i(log xi − γ log yi)
2 = 0

should hold. This is indeed satisfied by Equation (A2).
Similar considerations are valid for the estimation of exponents in multivariate scaling.

Assuming Equation (8) and defining s̃ ≡ s/kαlβ, the probability function of s̃ is constant
regardless of k and `: P(s̃|k, l) = P̃s|k,l(s̃). Therefore, α and β can be estimated as follows:

(
α̂, β̂
)
= arg min

(α,β)

[(
Cor

[
log
(

s
kαlβ

)
, log k

])2
+

(
Cor

[
log
(

s
kαlβ

)
, log l

])2
]

. (A3)

When the correlation coefficients are zero so that the right-hand side of Equation (A3)
is minimal and when we apply transformations s← s/s , k← k/k , and l ← l/l , where x
represents the geometric mean of the variable x,

∑i(log si − α log ki − β log li)× log ki = ∑i(log si − α log ki − β log li)× log li = 0,

where ki, `i, and si represent the ith samples of k, `, and s, respectively. Under this condition,

∂

∂α ∑i(log si − α log ki − β log li)
2 = 0;

∂

∂β ∑i(log si − α log ki − β log li)
2 = 0. (A4)

Therefore, the estimation in Equation (A3) can be equated to the linear least-squares
regression of log s against log k and log l without the interaction term.

Although it is more typical to remove the correlations between “explanatory” variables
in the regression analysis, the foregoing method provides a result equivalent to such an
orthogonalized version of regression. Let us consider the regression of log s against log k
and log[l/kγ1 ], where γ1 is a constant determined empirically (γ1 ≈ 1.0, as shown in
Figure 10c). The variables are again normalized with transformation x ← x/x , where x
represents the geometric mean of the variable x. Here, exponents α′ and β′ are intended to

fulfill the multivariate scaling, s ∝ kα′
(

l
kγ1

)β′

, and are thus estimated as follows:

(
α̂′, β̂′

)
= arg min

α′ ,β′

Cor

[
log

(
s

kα′(l/kγ1)β′

)
, log k

]2

+ Cor

[
log

(
s

kα′(l/kγ1)β′

)
, log(l/kγ1)

]2
.

When the correlations are zero,

∑i

(
log si − α′ log ki − β′(log li − γ1 log ki)

)
· log ki = 0; (A5)

∑i

(
log si − α′ log ki − β′(log li − γ1 log ki)

)
·(log li − γ1 log ki) = 0. (A6)

By adding Equation (A6) to Equation (A5) multiplied by γ1, we obtain

∑i

(
log si − α′ log ki − β′(log li − γ1 log ki)

)
· log li = 0. (A7)

Equations (A5) and (A7) are satisfied with α′ = α+ βγ1 and β′ = β when Equation (A4)
holds. Therefore, the estimated values of the exponents in a formal regression analysis
can be derived from the regression with the “explanatory” variables (not orthogonalized).
Note that α′ is the mathematically expected value of γ2, as indicated by Equation (A16) in
Appendix B.

Appendix B. Derivation of Asymptotic Power–Law or Scaling Exponents

Here, we derive the relations between asymptotic exponents for power–law distri-
butions and scalings assuming the bi- and trivariate scaling relations. This allows us
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to check the consistency of results of regression analyses. First, given Equations (1)–(3),
we derive the asymptotic power–law exponent of the marginal distribution, P(x), of the
“explained” variable, x. Second, given Equations (1) and (8), we calculate the asymptotic
power–law exponent of the marginal distribution of s. Third, we show that the bivariate
scaling exponents, γ2 and γ3 (i.e., those of sales s against number of trading partners k and
against number of employees `, respectively), can be determined from α, β, and γ1.

Because Equations (1)–(3) have the general form:

P(x|y) = P̃x|y(x/yγ)/yγ (A8)

we can derive the power–law exponent at the tail of the density function of the marginal
distribution, Px(x) ≡ P(x), for variable x given the following: positive scaling exponent
γ, P̃x|y (the universal distribution function of x conditional on y), and marginal distribution
Py(y) ≡ P(y). Assuming that P̃x|y and Py have power–law right tails of exponents δx|y and
δy, respectively, we approximate the functions as

P̃x|y(x̃) =

{
cx|y x̃−δx|y (x̃ ≥ 1)
dx|y(x̃) (0 ≤ x̃ < 1)

(A9)

and

Py(y) =
{

cyy−δy (y ≥ 1)
dy(y) (0 ≤ y < 1)

(A10)

where cx|y and cy are positive constants, δx|y and δy represent the power–law exponents larger
than 1, and dx|y and dy represent the distribution functions for the smaller side. This approxi-
mation is based on the actual distributions of the size variables (Figures 2a–d, 4d–f and 5d–f).
We set the threshold beyond which the distribution follows the power law to unity because
the same results are easily derived for the asymptotic value of exponents with linear transfor-
mations as long as the threshold is positive. By applying Bayes’ theorem and assuming that
x > 1 (because we are interested in the “tails” or asymptotic behaviors as x → ∞ ), we derive
Px(x), i.e., the marginal distribution of x, from P(x, y), i.e., the joint distribution of x and y:

Px(x) =
∫ ∞

0
P(x, y)dy =

∫ ∞

0
P(x|y)P(y)dy = (I1 − C)x−δx|y + (I2 + C)x−1−(δy−1)/γ,

where I1, I2, and C are constants respectively defined as

I1 = cx|y

∫ 1

0
yγ(δx|y−1)dy(y)dy,

I2 = cy

∫ ∞

1
ỹ−γ−δy dx|y

(
1

ỹγ

)
dỹ,

C = cx|ycy/
(

γ
(

δx|y − 1
)
− δy + 1

)
and substitution ỹ = y/x1/γ is applied in the last integral term. Therefore, the asymptotic
behavior of Px(x) at positive infinity is determined by whether δx|y or 1 +

(
δy − 1

)
/γ is

smaller: as x → ∞ , the behavior of Px is approximated as

Px(x) ∝ x−δx (A11)

where

δx = min
[

δx|y, 1 +
δy − 1

γ

]
(A12)

The change in δx|y does not affect the power–law exponent as long as δy is sufficiently
large; this is consistent with the intuitive explanation (Figure 7) presented in the main text.
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Although rather complex, a similar strategy works for the case of multivariate scaling.
Let us continue with the foregoing notations, except that x, y, and γ are replaced with `, k,
and γ1, respectively, and Equation (8) is assumed as well as the following:

P̃s|k,l(s̃) =

{
cs|k,l s̃

−δs|k,l (s̃ ≥ 1)
ds|k,l(s̃) (0 ≤ s̃ < 1)

, (A13)

where cs|l,k is a positive constant, δs|k,l represents a power–law exponent larger than 1,
and ds|k,l represents the distribution function for the smaller side. Again, the threshold
of the functional change of P̃s|k,l is set to unity without loss of generality. The marginal
distribution of s, i.e., Ps(s), for s > 1 is

Ps(s) =
∫ ∞

0

∫ ∞
0 P(k, l, s)dldk =

∫ ∞
0

∫ ∞
0 P(s|k, l)P(k, l)dldk

=
∫ ∞

0

∫ ∞
0 P(s|k, l)P(l|k)P(k)dldk.

This can be evaluated as the sum of the following 10 integral terms:∫ 1

0

∫ kγ1

0
P(s|k, l)P(l|k)P(k)dldk =

[
cs|k,l

∫ 1

0
k(α+βγ1)(δs|k,l−1)dk(k)

∫ 1

0
l̃β(δs|k,l−1)dl|k

(
l̃
)

dl̃dk
]

s−δs|k,l ,

where substitution l̃ = l/kγ1 is applied;

∫ 1
0

∫ ( s
k

α)
1
β

kγ1 P(s|k, l)P(l|k)P(k)dldk =
cl|kcs|k,l

E1

([∫ 1
0 k(α/β+γ1)(δl|k−1)dk(k)dk

]
s−1−(δl|k−1)/β −

[∫ 1
0 k(α+βγ1)(δs|k,l−1)dk(k)dk

]
s−δs|k,l

)
where E1 = β

(
δs|k,l − 1

)
− δl|k + 1;

∫ 1

0

∫ ∞

( s
k

α)
1
β

P(s|k, l)P(l|k)P(k)dldk =

[
cl|k

∫ 1

0
k(α/β+γ1)(δl|k−1)dk(k)dk

∫ ∞

1
ds|k,l

(
1

l̃β

)
l̃−δl|k−βdl̃

]
s−1−(δl|k−1)/β,

where substitution l̃ =
(

kα/β/s1/β
)
× l is applied;

∫ s1/(α+βγ1)

1

∫ kγ1

0
P(s|k, l)P(l|k)P(k)dldk =

ckcs|k,l

E2

[∫ 1

0
l̃β(δs|k,l−1)dl|k

(
l̃
)

dl̃
](

s−1−(δk−1)/(α+βγ1) − s−δs|k,l
)

,

where substitution l̃ = l/kγ1 is applied and E2 = (α + βγ1)
(

δs|k,l − 1
)
− δk + 1;

∫ s
1

(α+βγ1)

1

∫ ( s
k

α)
1
β

kγ1
P(s|k, l)P(l|k)P(k)dldk =

ckcl|kcs|k,l

E1

((
1

E3
− 1

E2

)
s−1−(δk−1)/(α+βγ1) − 1

E3
s−1−(δl|k−1)/β +

1
E2

s−δs|k,l

)
where E3 = (α/β + γ1)

(
δl|k − 1

)
− δk + 1;

∫ s1/(α+βγ1)

1

∫ ∞

(s/kα)1/β
P(s|k, l)P(l|k)P(k)dldk =

[ ckcl|k
E3

∫ ∞

1
ds|k,l

(
1

l̃β

)
l̃−δl|k−βdl̃

](
s−1−(δk−1)/(α+βγ1) − s−1−(δl|k−1)/β

)
,

where substitution l̃ =
(

kα/β/s1/β
)
× l is applied;

∫ sγ1/(α+βγ1)

0

∫ (s/lβ)
1/α

s1/(α+βγ1)
P(s|k, l)P(l|k)P(k)dkdl =

(
ckcs|k,l I

3
1

)
s−1−(δk−1)/(α+βγ1),

where

I3
1 =

∫ 1

0
l̃−1+(δs|k,l−1)(α+βγ1)/γ1−(δk−1)/γ1

∫ l̃−(α+βγ1)/αγ1

l̃−1/γ1
k̃α(δs|k,l−1)−γ1−δk dl|k

(
1

k̃γ1

)
dk̃dl̃



Entropy 2021, 23, 168 28 of 31

and substitutions k̃ = l−1/γ1 × k and l̃ = s−γ1/(α+βγ1) × l are applied;

∫ sγ1/(α+βγ1)

0

∫ ∞

(s/lβ)
1/α

P(s|k, l)P(l|k)P(k)dkdl =
(

ck I3
2

)
s−1−(δk−1)/(α+βγ1),

where

I3
2 =

∫ 1

0
l̃(γ1+δk−1)β/α

∫ ∞

1

1

k̃α
ds|k,l

(
1

k̃α

)
1

k̃γ1
ds|k,l

(
l̃(α+βγ1)/α

k̃γ1

)
k̃−δk dk̃dl̃

and substitutions k̃ =
(
lβ/s

)1/α × k and l̃ = s−γ1/(α+βγ1) × l are applied;∫ ∞

sγ1/(α+βγ1)

∫ ∞

l1/γ1
P(s|k, l)P(l|k)P(k)dkdl =

(
ck I3

3

)
s−1−(δk−1)/(α+βγ1),

where

I3
3 =

∫ ∞

1
l̃−1−(α+βγ1+δk−1)/γ1

∫ ∞

1

1

k̃α
ds|k,l

(
1

k̃α l̃(α+βγ1)/γ1

)
1

k̃γ1
ds|k,l

(
1

k̃γ1

)
k̃−δk dk̃dl̃

and substitutions k̃ = l−1/γ1 × k and l̃ = s−γ1/(α+βγ1) × l are applied;

∫ ∞

sγ1/(α+βγ1)

∫ l1/γ1

s1/(α+βγ1)
P(s|k, l)P(l|k)P(k)dkdl =

(
ckcl|k I3

4

)
s−1−(δk−1)/(α+βγ1),

where

I3
4 =

∫ ∞

1
l̃−1−(α+βγ1+δk−1)/γ1

∫ 1

l̃−1/γ1

1

k̃α
ds|k,l

(
1

k̃α l̃(α+βγ1)/γ1

)
k̃γ1(δl|k−1)−δk dk̃dl̃

and substitutions k̃ = l−1/γ1 × k and l̃ = s−γ1/(α+βγ1) × l are applied. The sum of these 10
terms has the form

Ps(s) = A1 × s−δs|k,l + A2 × s−1−
δl|k−1

β + A3 × s−1− δk−1
α+βγ1 ,

where A1, A2, and A3 are constants independent of s. Therefore, the asymptotic behavior
of Ps as s→ ∞ is expressed as follows:

Ps(s) ∝ s−δs , (A14)

where δs is the smallest of the three exponents:

δs = min
[

δs|k,l , 1 +
δl|k − 1

β
, 1 +

δk − 1
α + βγ1

]
(A15)

Finally, we evaluate the values of exponents γ2 and γ3 using α, β, and γ1, given
Equations (1) and (7). Then, the joint distribution of k, `, and s is given as follows:

P(k, l, s) = P(s|k, l)P(l|k)P(k) = 1
kαlβ

P̃s|k,l

(
s

kαlβ

)
1

kγ1
P̃l|k

(
l

kγ1

)
Pk(k).

We can obtain the joint distribution of k and s by integrating this probability with
respect to `.

P(k, s) =
∫ ∞

−∞
P(k, l, s)dl =

∫ ∞

0

1
kαlβ

P̃s|k,l

(
s

kαlβ

)
1

kγ1
P̃l|k

(
l

kγ1

)
Pk(k)dl.

Comparing P(k = k0, s) and P(k = k1, s) we have



Entropy 2021, 23, 168 29 of 31

P(k = k1, s) =
∫ ∞

0
1

k1
α lβ P̃s|k,l

(
s

k1
α lβ

)
1

k1
γ1 P̃l|k

(
l

k1
γ1

)
Pk(k1)dl

=
(

k0
k1

)α+βγ1 × Pk(k1)
Pk(k0)

∫ ∞
0

1
k0

α l̃β
P̃s|k,l

(
s

k0
α l̃β
×
(

k0
k1

)α+βγ1
)

1
k0

γ1 P̃l|k

(
l̃

k0
γ1

)
Pk(k0)dl̃

=
(

k0
k1

)α+βγ1 × Pk(k1)
Pk(k0)

× P
(

k = k0,, s =
(

k0
k1

)α+βγ1
s
)

Therefore,

P(s|k = k1) =
1

k1
α+βγ1

P̃s|k

(
s

k1
α+βγ1

)
,

where

P̃s|k(s̃) =
k0

α+βγ1

Pk(k0)
× P

(
k = k0, s = k0

α+βγ1 × s̃
)

.

Comparing the foregoing result with Equation (2), we have

γ2 = α + βγ1 (A16)

Similarly, the joint distribution of ` and s can be evaluated as

P(l = l0, s) =
∫ ∞

−∞
P(k, l = l0, s)dk =

∫ ∞

0

1
kαl0β

P̃s|k,l

(
s

kαl0β

)
1

kγ1
P̃l|k

(
l

kγ1

)
Pk(k)dk.

If we assume a power–law distribution of k similar to Equation (A10), i.e.,

Pk(k) =
{

ckk−δk (y ≥ θk)
dk(k) (0 ≤ y < θk)

where θk is a positive constant of the threshold, then by comparing P(l = l0, s) with
P(l = l1, s) we obtain

P(l = l1, s) =
(

l0
l1

)(γ1−1+α+βγ1)/γ1
[(

l0
l1

)δk/γ1
P
(

l = l0,
(

l0
l1

)(α+βγ1)/γ1
s
)

−
∫ θk

0
1

k̃α l0β
P̃s|k,l

(
s

k̃α l0β
×
(

l0
l1

)(α+βγ1)/γ1
)

1
k̃γ1

P̃l|k

(
l0

k̃γ1

)
Pk

(
k̃
)

dk̃
]

+
∫ θk(l1/l0)

1/γ1

0
1

kα l1β P̃s|k,l

(
s

kα l1β

)
1

kγ1 P̃l|k

(
l

kγ1

)
Pk(k)dk.

Here, substitution k̃ = (l0/l1)
1/γ1 × k is used. Clearly, the two integral terms in

this strict relation becomes negligible as s→ ∞ . Under an additional condition that
Equation (A11) holds for l with –δl = −1− (δk − 1)/γ1

P(s|l = l1) =
P(l = l1, s)
P(l = l1)

∼ 1
l1(α+βγ1)/γ1

P̃s|l

(
s

l1(α+βγ1)/γ1

)
as l1 → ∞ and s/l1(α+βγ1)/γ1 → ∞ where

P̃s|l(s̃) = l0(α+βγ1)/γ1 × P
(

l = l0, s = l0(α+βγ1)/γ1 × s̃
)

.

Comparing this result with Equation (3), we have

γ3 =
α + βγ1

γ1
. (A17)

for the right tail of s in a limited condition.
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Table S1. Descriptive statistics of the final data of firm size measures. Decimal parts are rounded in cases where the figure exceeds four digits. 
 

Variable Year 
Sample 

size 
Mean 

Standard 

deviation 
Minimum 

25%-

quantile 
Median 

75%-

quantile 
Maximum 

Interquartile 

range 

Geometric 

mean 

Geometric 

stand. dev. 

             
Number of 

Trading 

Partners 

1994 770311 4.740 31.46 1 1 2 4 7881 3 2.498 2.335 

1995 803488 4.979 32.40 1 1 2 4 8013 3 2.618 2.359 

1996 831859 5.182 33.03 1 1 3 5 8009 4 2.722 2.375 

 1997 857350 5.395 33.43 1 1 3 5 7945 4 2.826 2.398 

 1998 882769 5.532 33.48 1 2 3 5 7696 3 2.908 2.403 

 1999 923288 5.615 33.21 1 2 3 5 7393 3 2.961 2.407 

 2000 950796 5.727 33.30 1 2 3 5 7082 3 3.018 2.415 

 2001 973409 5.854 33.42 1 2 3 5 6864 3 3.080 2.429 

 2002 997949 5.911 34.09 1 2 3 5 6424 3 3.100 2.437 

 2003 1009667 5.963 33.16 1 2 3 5 6007 3 3.118 2.456 

 2004 1009889 6.071 33.32 1 2 3 5 5832 3 3.163 2.472 

 2005 1006855 6.208 34.19 1 2 3 6 5562 4 3.225 2.484 

 2006 995651 6.341 36.30 1 2 3 6 10987 4 3.277 2.501 

 2007 996413 6.468 38.22 1 2 3 6 14941 4 3.324 2.519 

 2008 1009188 6.837 39.81 1 2 3 6 15587 4 3.474 2.570 

 2009 1026513 6.934 39.87 1 2 3 7 15504 5 3.512 2.593 

 2010 1064424 6.885 39.94 1 2 3 7 15466 5 3.467 2.607 

 2011 1082665 6.881 40.10 1 2 3 7 15252 5 3.456 2.615 

 2012 1086584 6.893 40.59 1 2 3 7 15161 5 3.455 2.622 

 2013 1090161 6.958 41.29 1 2 3 7 14928 5 3.487 2.627 

 2014 1098323 7.003 41.14 1 2 3 7 14895 5 3.500 2.637 

 2015 1097372 7.052 40.93 1 2 3 7 14740 5 3.535 2.639 
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Table S1. Continued. 
 

Variable Year 
Sample 

size 
Mean 

Standard 

deviation 
Minimum 

25%-

quantile 
Median 

75%-

quantile 
Maximum 

Interquartile 

range 

Geometric 

mean 

Geometric 

stand. dev. 

             
Number of 

Employees 

1994 936043 29.88 380.0 1 3 7 18 208028 15 8.152 3.760 

1995 949379 29.31 366.2 1 3 7 18 191436 15 8.027 3.754 

1996 970083 28.73 356.4 1 3 7 18 186706 15 7.916 3.736 

 1997 979906 28.29 335.4 1 3 7 17 161488 14 7.799 3.738 

 1998 994971 27.50 292.1 1 3 7 16 77877 13 7.568 3.737 

 1999 1023699 26.31 281.6 1 3 6 15 77033 12 7.207 3.718 

 2000 1037670 25.69 277.7 1 3 6 15 84242 12 6.983 3.716 

 2001 1062192 24.74 267.7 1 3 6 15 91026 12 6.739 3.698 

 2002 1085096 23.71 255.0 1 3 5 14 97474 11 6.440 3.682 

 2003 1097615 23.06 247.4 1 2 5 13 100090 11 6.230 3.679 

 2004 1089568 23.07 341.7 1 2 5 13 271368 11 6.138 3.694 

 2005 1057508 23.62 341.9 1 2 5 13 261937 11 6.137 3.743 

 2006 1062881 23.54 336.2 1 2 5 13 256572 11 6.105 3.737 

 2007 1044619 24.16 365.7 1 2 5 13 254177 11 6.084 3.763 

 2008 1057914 24.17 313.6 1 2 5 13 143276 11 5.997 3.768 

 2009 1088585 23.69 307.9 1 2 5 12 140846 10 5.817 3.751 

 2010 1144634 22.88 301.9 1 2 5 12 136906 10 5.622 3.724 

 2011 1194421 22.28 291.2 1 2 5 11 139320 9 5.519 3.707 

 2012 1204466 22.24 326.0 1 2 5 11 209000 9 5.465 3.712 

 2013 1206579 22.28 321.5 1 2 5 11 200601 9 5.453 3.723 

 2014 1219234 22.45 326.5 1 2 4 11 194688 9 5.436 3.733 

 2015 1215263 22.76 327.6 1 2 5 11 193934 9 5.469 3.757 
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Table S1. Continued. 
 

Variable Year 
Sample 

size 
Mean 

Standard 

deviation 
Minimum 

25%-

quantile 
Median 

75%-

quantile 
Maximum 

Interquartile 

range 

Geometric 

mean 

Geometric 

stand. dev. 

             
Annual 

Sales   

[×106 yen] 

1994 1008122 1287 43135 1 70 180 475 16134997 405 197.1 4.499 

1995 1027730 1261 40821 1 70 180 463 15942401 393 193.7 4.514 

1996 1043189 1301 42242 1 70 177 465 15491756 395 192.9 4.550 

 1997 1060980 1301 39472 1 70 173 460 14176418 390 190.0 4.608 

 1998 1092909 1224 37819 1 62 159 422 14465555 360 174.9 4.623 

 1999 1125046 1121 32808 1 58 145 390 12372623 332 160.3 4.602 

 2000 1149651 1103 31164 1 55 137 370 10658978 315 152.2 4.653 

 2001 1181751 1079 30370 1 50 127 350 10927418 300 142.7 4.722 

 2002 1205695 1011 27694 1 46 118 320 9562842 274 131.6 4.750 

 2003 1215605 992.4 26577 1 44 110 306 9419359 262 125.2 4.802 

 2004 1212376 1025 34296 1 42 109 301 24602332 259 123.3 4.863 

 2005 1200578 1063 33110 1 41 108 304 20633322 263 123.0 4.925 

 2006 1194911 1107 36071 1 40 106 305 23061200 265 122.2 5.000 

 2007 1199061 1141 35130 1 40 104 303 19604000 263 120.5 5.082 

 2008 1222606 1140 32924 1 39 100 300 12291218 261 114.0 5.198 

 2009 1287709 1015 29615 1 32 90 259 11130100 227 98.49 5.295 

 2010 1347533 899.6 24955 1 30 80 234 9656263 204 89.27 5.297 

 2011 1379216 908.5 26313 1 30 80 229 10151462 199 86.32 5.363 

 2012 1396227 907.8 26931 1 30 80 227 10454663 197 85.43 5.405 

 2013 1387639 914.0 28006 1 29 79 221 10781950 192 84.54 5.414 

 2014 1344994 977.6 30476 1 29 80 230 11042163 201 85.74 5.532 

 2015 1360922 974.2 28766 1 29 80 231 11244832 202 86.10 5.558 
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Table S1. Continued.  
 

Variable Year 
Sample 

size 
Mean 

Standard 

deviation 
Minimum 

25%-

quantile 
Median 

75%-

quantile 
Maximum 

Interquartile 

range 

Geometric 

mean 

Geometric 

stand. dev. 

             
Total 

Assets   

[×103 yen] 

2000 181686 4135493 74423716 10 81683 255329 882316 14294811000 800633 290191 6.328 

2001 186858 4104281 74911398 3 72828 236892 841968 14297626000 769140 268857 6.563 

2002 189894 3894099 72769318 2 67852 222058 799188 14174834000 731337 252077 6.604 

 2003 194364 3694630 70104721 32 64209 209452 760592 13812538000 696382 239379 6.595 

 2004 207723 3467672 67685487 31 56705 184483 680718 13434326000 624013 213927 6.630 

 2005 213294 3429830 66719176 30 55760 182463 669589 13101186000 613829 209787 6.667 

 2006 220572 3471718 68552052 3 53451 178874 657628 13031464000 604177 203486 6.771 

 2007 224971 3510722 69913838 11 51631 175528 652767 12924022000 601136 199031 6.882 

 2008 238993 3299829 68482441 10 45719 156947 610713 13057731000 564994 181016 7.001 

 2009 237668 3162473 66969138 2 44078 151853 588000 12990060000 543922 172869 7.018 

 2010 246010 3039992 66463245 1 41123 142068 554118 12643034000 512995 161693 7.082 

 2011 250324 3012288 67275390 1 41243 143296 552156 14255958000 510912 161369 7.090 

 2012 257144 2985455 68894826 1 41309 141724 545992 15149263000 504683 160563 7.049 

 2013 263342 2995711 69706050 1 41933 143006 546425 14619772000 504492 161895 6.978 

 2014 272874 2996407 70849049 1 43276 145434 551165 14369843000 507890 165493 6.881 

 2015 280922 2978913 66932991 1 43633 146394 554249 15128623000 510616 166515 6.879 
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Table S1. Continued.  
 

Variable Year 
Sample 

size 
Mean 

Standard 

deviation 
Minimum 

25%-

quantile 
Median 

75%-

quantile 
Maximum 

Interquartile 

range 

Geometric 

mean 

Geometric 

stand. dev. 

             
Capital 

Stock   

[×103 yen] 

1994 854331 95849 3682747 3 3000 10000 15000 1937553152 12000 8131 3.782 

1995 875837 97724 3558007 3 5000 10000 15000 1384222077 10000 9446 3.438 

1996 893955 104166 4196309 1 5000 10000 15000 1937553152 10000 11026 3.029 

 1997 914952 108642 4431289 1 6000 10000 15000 1937553152 9000 11174 3.014 

 1998 942452 105873 4168308 1 5000 10000 15000 2431711152 10000 11048 3.034 

 1999 972305 108356 4547394 1 5000 10000 15000 2642885152 10000 10864 3.057 

 2000 993005 118293 5968979 1 5000 10000 15000 2837949000 10000 10813 3.099 

 2001 1015856 118754 6096227 1 5000 10000 15000 2987504152 10000 10698 3.129 

 2002 1033366 119401 5893300 1 5000 10000 15000 3122575655 10000 10571 3.160 

 2003 1042965 114247 4946269 1 5000 10000 15000 3016150666 10000 10480 3.184 

 2004 1043259 115878 5009836 1 5000 10000 15000 3016150000 10000 10478 3.215 

 2005 1037020 120020 5090766 1 5000 10000 15000 3016150666 10000 10482 3.251 

 2006 1033383 119909 4032838 1 5000 10000 15000 1268807877 10000 10452 3.291 

 2007 1038135 123609 4104516 1 5000 10000 15000 1268807877 10000 10359 3.349 

 2008 1060282 123451 3911395 1 4000 10000 15000 1095543220 11000 10189 3.428 

 2009 1096934 125045 8166824 1 3000 10000 15000 7491288000 12000 9792 3.484 

 2010 1143646 118700 3972260 1 3000 10000 15000 1118378000 12000 9570 3.632 

 2011 1171438 128605 9385173 1 3000 10000 15000 7708783583 12000 9429 3.753 

 2012 1187588 130372 9467233 1 3000 10000 14000 7747015342 11000 9249 3.851 

 2013 1200282 135279 10301850 1 3000 10000 14000 7800176000 11000 9134 3.928 

 2014 1214582 131250 9561387 1 3000 10000 14000 7838998486 11000 9032 4.008 

 2015 1222063 131290 9559768 1 3000 10000 14000 7894415052 11000 8949 4.067 

             
 


